

S7-200 Modbus 通信

S7-200 Modbus 通信

S7-200

Hardware

Software

Workshop

- 概述
 - 定义
 - Modbus 报文传输格式
 - Modbus 主站协议指令
 - Modbus 从站协议指令
- Micro/Win 指令库的管理
 - 指令库的安装
 - 指令库的卸载
 - 指令库的添加
 - 指令库的删除
- 编程示例
 - 功能要求
 - 实现步骤

Hardware

Software

- ・ 定义
- Modbus 报文传输格式
- Modbus 主站协议指令
- Modbus 从站协议指令

Hardware

Software

- 使用 Modbus 通信协议是 Modicon 公司提出的一种报文传输协议, 它广泛应用于工业控制领域,并已经成为一种通用的行业标准。不同 厂商提供的控制设置可通过 Modbus 协议连成通信网络,从而实现集 中控制。
- 根据传输网络类型的区别, Modbus 通信协议又分为串行链路上的 Modbus 和基于 TCP/IP 协议的 Modbus。
- Modbus 串行链路协议只有一个主站,可以有1~247个从站。
 Modbus 通信只能从主站发起,从站在未收到主站的请求时,不能发送数据或互相通信。
- Modbus 串行链路协议的通信接口可采用 RS-485 接口,也可使用 RS-232C 接口。其中RS-485 接口可用于远距离通信,RS-232C 接口 只能用于短距离通信。

Hardware

Software

Workshop

- 定义
- Modbus 报文传输格式
 - Modbus 寻址
 - ASCII 模式
 - RTU 模式

- Modbus 主站协议指令
- Modbus 从站协议指令

S7-200

Hardware

Software

Workshop

- Modbus 寻址
- ・ ASCII 模式
- ・ RTU 模式

Modbus 寻址

S7-200

Hardware

Software

- Modbus 地址通常是包含数据类型和偏移量的5个或6个字符值。第一 个或前两个字符决定数据类型,最后的四个字符是符合数据类型的一 个适当的值。Modbus 主设备指令能将地址映射至正确的功能,以便 发送到从站。
- 1 Modbus 主站寻址
- Modbus主设备指令支持下列Modbus地址:
- (1)00001至09999是离散输出(线圈)。
- (2)10001至19999是离散输入(触点)。
- (3) 30001至39999是输入寄存器(通常是模拟量输入)。
- (4) 40001至49999是保持寄存器。
- 所有Modbus地址均以1为基位,表示第一个数据值从地址1开始。有效地址范围将取决于从站。不同的从站将支持不同的数据类型和地址

Modbus 寻址

S7-200

Hardware

Software

- 2 Modbus 从站寻址
- Modbus从站指令支持以下地址:
- (1)000001至000128是实际输出,对应于Q0.0——Q15.7。
- (2)010001至010128是实际输入,对应于I0.0——I15.7。
- (3)030001至030032是模拟输入寄存器,对应于AIW0至AIW2。
- (4) 040001至04XXXX是保持寄存器,对应于V区。
- Modbus 从站协议允许您对Modbus主站可访问的输入、输出、模拟 输入和保持寄存器(V区)的数量进行限定。MBUS_INIT 指令的参数 MaxIQ 指定 Modbus 主站允许访问的实际输入或输出(I或Q)的最 大数量。MBUS_INIT 指令的 MaxAI 参数指定 Modbus 主站允许访问 的输入寄存器(AIW)的最大数量。MBUS_INIT 指令的MaxHold 参 数指定 Modbus 主站允许访问的保持寄存器(V存储区字)的最大数 量。

Modbus 寻址

•

S7-200

Hardware Software Workshop Modbus 地址与 S7-200 地址对应关系如下表所示。

000001	Q0.0
000002	Q0.1
000003	Q0.2
000127	Q15.6
000128	Q15.7
010001	I0.0
010002	I0.1
010003	10.2
010127	I15.6
010128	115.7
030001	AIW0
030002	AIW2
030003	AIW4
030032	AIW62
040001	HoldStart
040002	HoldStart+2
040003	HoldStart+4
04xxxx	HoldStart+2 x (xxxx-1)

S7-200

Hardware

Software

Workshop

- Modbus 寻址
- ・ ASCII 模式
- ・ RTU 模式

S7-200

•

Hardware

Software

Workshop

EMENS

- Modbus 通信协议有 ASCII 和 RTU (远程传输单元)两种报文传输 模式。Modbus 网络中所有的站必须采用相同的传输模式和串口参数。
- ASCII模式采用LRC(纵向冗余校验)方式进行校验,其报文格式如 下表所示:

:	地址	功能	数据	数据1	 数据n	LRC	LRC	回车	换行
		码	字节			高字	低字		
			数			节	节		

- ASCII模式中,报文帧中的每个8位字节都转换为两个ASCII码发送。
 报文中的每个ASCII码都由16进制字符组成,传输的每个字符都包括1
 个起始位、7个数据位、1个奇偶校验位、1个停止位;如果没有校验位,则有两个停止位。
- LRC计算时不包括开始的冒号符、LRC本身和回车换行符。

S7-200

Hardware

Software

Workshop

- Modbus 寻址
- ・ ASCII 模式
- ・ RTU 模式

S7-200

Hardware

Software

Workshop

• RTU模式的报文格式如下表所示:

地址	功能码	数据 1		数据 n	CRC 高字节	CRC 低字节
----	-----	------	--	------	---------	---------

- 地址: Modbus 地址, 1个字节。
- 功能码: Modbus功能代码, 1个字节。Modbus协议支持的功能码 共16条(1~16),其中西门子Modbus RTU协议库支持最常用的8条。
- 信息数据:N个字节,格式与功能码有关。
- CRC:循环冗余校验,两个字节。

S7-200

Hardware Software

Workshop

SIEMENS

• 西门子Modbus RTU协议库支持最常用的8条功能码如下表所示。

功能码	描述
1	读取单个/多个线圈的实际输出状态。功能1返
	回任意数量输出点的接通/断开状态(Q)。
2	读取单个/多个线圈的实际输入状态。功能 2 返
	回任意数量的输入点的接通/断开状态(I)。
3	多个保持寄存器。功能 3 返回 Ⅴ 存储器的内容。
	保持寄存器在 Modbus 下是字类型,在一个请求
	中最多可读 120 个字。
4	读单个/多个输入寄存器,返回模拟输入值。
5	写单个线圈 (实际输出)。 功能 5 将实际输出点
	设置为指定值。该输出点不是被强制,用户程
	序可以重写由 Modbus 的请求而写入的值。
6	写单个保持寄存器。功能 6 写一个单个保持寄
	存器的值到 S7200 的 V 存储区。
15	写多个线圈(实际输出)。功能 15 写多个实际
	输出值到 S7200 的 Q 映象区。起始输出点必
	须是一个字节的开始(如,Q0.0 或 Q2.0),并
	且要写的输出的数量是 8 的倍数。这是 Modbus
	从站协议指令的限定。这些点不是被强制,用
	户程序可以重写由 Modbus 的请求而写入的值。
16	写多个保持寄存器。功能 16 写多个保持寄存器
	到 S7200 的 V 区。在一个请求中最多可写 120
	字.

S7-200

- Hardware
- Software
- Workshop

- RTU模式下,报文中的每个8位字节被转化为两个16进制字符,然后 以字节为单位进行传输,并采用CRC(循环冗余校验)方式进行校验。 RTU模式的优点在于同波特率下有着比ASCII模式更高的传输效率。
- 目前支持 Modbus 通信的 DCS 系统和过程仪表大都采用基于串行接口的 Modbus RTU 模式,西门子提供了针对西门子 PLC Modbus RTU 通信的协议库。
- 如果要在西门子 PLC 上实现 Modbus ASCII 模式通信,用户可根据 相关协议规定利用自由口模式自主编程实现。

S7-200

Hardware

Software

- 西门子专门为 Modbus RTU 通信开发了指令库,极大地简化了 Modbus RTU 通信的开发,以便于快速实现相关应用。通过 Modbus RTU 从站指令库,使得 S7-200 可作为 Modbus RTU 中的从站设备 集成到 Modbus 网络中,以实现与 Modbus 主站设备的通信。
- 而在最近推出的 STEP7-Micro/Win SP5 升级包中,西门子又增加了
 Mobus RTU Master 指令库,使得 S7-200 CPU 可作为 Modbus 主
 站,实现与 Modbus RTU 从站的通信任务。
- 要使用 Modbus 指令库必须注意以下四点:
- (1)使用 Modbus 指令库前,需要将其安装到 Step7-Micro/Win 中,STEP 7-Micro/WIN 必须为 V3.2 或以上版本。
- (2) S7-200 CPU 必须是固化程序修订版2.00或最好支持 Modbus 主设备协议库(CPU MLFB 21x-2xx23-0XB0)。

S7-200

Hardware

Software

- (3)由于目前已经推出了针对端口0和端口1的 Modbus RTU 主站指令库 Modbus Master Port0 和 Modbus Master Port1、以及针对端口0的 Modbus RTU 从站指令库,故可利用指令库实现端口0的 Modbus RTU 主/从站通信。
- (4) 一旦 CPU 端口被用于 Modbus RTU 主/从站协议通信时,该端口就无法用于任何其它用途,包括与 STEP 7-Micro/WIN 通讯。

Hardware

Software

Workshop

- ・ 定义
- Modbus 报文传输格式
- Modbus 主站协议指令
 - MBUS_CTRL 指令
 - MBUS_MSG 指令
- Modbus 从站协议指令
 - MBUS_INIT 指令
 - MBUS_SLAVE 指令

Modbus 主站协议指令

S7-200

Hardware

Software

Workshop

•

MBUS_CTRL 指令

• MBUS_MSG 指令

MBUS_CTRL 指令

S7-200

Hardware

Software

- 西门子 Modbus 主站协议库包括两条指令:MBUS_CTRL 指令和 MBUS_MSG 指令。
- MBUS_CTRL 指令用于初始化主站通信,MBUS_MSG 指令(或用于端口1的MBUS_MSG_P1)用于启动对Modbus从站的请求并处理应答。
- MBUS_CTRL 指令用于 S7-200 端口0的 MBUS_CTRL 指令(或用于 端口1的 MBUS_CTRL_P1 指令)可初始化、监视或禁用 Modbus 通 讯。在使用 MBUS_MSG 指令之前,必须正确执行 MBUS_CTRL 指 令。指令完成后立即设定"完成"位,才能继续执行下一条指令。
- MBUS_CTRL 指令在每次扫描且EN输入打开时执行。MBUS_CTRL 指令必须在每次扫描时(包括首次扫描)被调用,以允许监视随 MBUS_MSG 指令启动的任何突出消息的进程。除非每次调用 MBUS_CTRL,否则Modbus 主设备协议将不能正确运行。

MBUS_CTRL 指令

S7-200

Hardware

Software

Workshop

- 西门子EN:指令使能位。
- Mode: "模式"参数。"模式"输入数值选择通讯协议。
 输入值1将CPU端口分配给Modbus协议并启用该协议。
 输入值0将CPU端口分配给PPI系统协议,
 并禁用Modbus协议。
- Baud: "波特率"参数。MBUS_CTRL指令支持的 波特率为1200、2400、4800、9600、19200、38400、 57600或115200bit/s。

- Parity: "奇偶校验"参数。"奇偶校验"参数被设为与Modbus从站奇偶校验相匹配。所有设置使用一个起始位和一个停止位。可接受的数值为:
- 0 无奇偶校验
- 1 奇校验
- 2 偶校验

MBUS_CTRL 指令

S7-200

•

- Hardware
- Software
- Workshop

- Timeout: "超时"参数。"超时"参数设为等待来 自从站应答的毫秒时间数。"超时"数值可以设置 的范围为1毫秒到32767毫秒。典型值是1000毫秒(1秒)。 "超时"参数应该设置的足够大,以便从站有时间 对所选的波特率作出应答。
- Done: MBUS_CTRL指令成功完成时,
 "完成"输出为1,否则为0。
- Error: "错误"输出代码。"错误"输出代码由反应 执行该指令的结果的特定数字构成。 "错误"输出代码的含义如下:
- 0 无错误
- 1 奇偶校验选择无效
- 2 波特率选择无效
- **3** 超时选择无效
 - 4 模式选择无效

•

MBUS_CTRL 指令

S7-200

Hardware

Software

Workshop

SIEMENS

上述参数支持的操作数和数据类型如下表所示。

输入输出	操作数	教据类型
Mode	I, Q, M, S, SM, T, C, V,	布尔
	L	
Baud	VD, ID, QD, MD, SD, SMD,	双字
	LD, AC, Constant, *VD,	
	*AC, *LD	
Parity	VB, IB, QB, MB, SB, SMB,	字节
	LB, AC, Constant, *VD,	
	*AC, *LD	
Timeout	VW, IW, QW, MW, SW,	字
	SMW, LW, AC, Constant,	
	*VD, *AC, *LD	
Done	I, Q, M, S, SM, T, C, V,	布尔
	L	
Error	VB, IB, QB, MB, SB, SMB,	字节
	LB, AC, *VD, *AC, *LD	

0

Hardware

Software

Workshop

•

MBUS_CTRL 指令

• MBUS_MSG 指令

S7-200

Hardware

Software

- MBUS_MSG 指令(或用于端口1的 MBUS_MSG_P1)用于启动对 Modbus从站的请求并处理应答。
- 当 EN 输入和"首次"输入都为1时, BUS_MSG 指令启动对 Modbus 从站的请求。发送请求、等待应答、并处理应答通常需要多次扫描。
 EN输入必须打开以启用请求的发送,并应该保持打开直到"完成"位被 置位。
- 必须注意的是,一次只能激活一条 MBUS_MSG 指令。如果启用了多条 MBUS_MSG 指令,则将处理所执行的第一条 MBUS_MSG 指令,之后的所有 MBUS_MSG 指令将中止并产生错误代码6。

Hardware

Software

Workshop

MBUS_MSG 指令

• EN: 指令使能位。

- First: "首次"参数。"首次"参数应该在有新请求要发送时 才打开以进行一次扫描。"首次"输入应当通过一个边沿 检测元素(例如上升沿)打开,这将导致请求被传送一次。
- Slave: "从站"参数。"从站"参数是Modbus从站的地址。
 允许的范围是0到247。地址0是广播地址,只能用于
 写请求。不存在对地址0的广播请求的应答。
 并非所有的从站会支持广播地址,S7-200 Modbus
 从站协议库不支持广播地址。
- RW: "读写"参数。"读写"参数指定是否要读取
 或写入该消息。"读写"参数允许使用下列两个值:
 0——读,1——写。

S7-200

Hardware

Software

Workshop

SIEMENS

- 00001至09999是离散输出(线圈)
- 10001至19999是离散输入(触点)
- 30001至39999是输入寄存器
- 40001至49999是保持寄存器
- 其中离散输出(线圈)和保持寄存器支持读取和写入请求,
 而离散输入(触点)和输入寄存器仅支持读取请求。

• "地址"的具体值应与Modbus从站支持的地址一致。

Count: "计数"参数。"计数"参数指定在该请求中读取
 或写入的数据元素的数目。"计数"数值是位数
 (对于位数据类型)和字数(对于字数据类型)。

S7-200

Hardware

Software

Workshop

SIEMENS

• 根据Modbus协议,"计数"参数与 Modbus 地址 存在以下对应关系:

地址	计数
Ожжж	"计数"是要读取或写入的位数。
1xxxx	"计数"是要读取的位数。
Зжжж	"计数"是要读取的输入寄存器的字数。
4xxxx	"计数"是要读取或写入的保持寄存器的字数。

- MBUS_MSG 指令将读取或写入最大120个字 或1920个位(240字节的数据)。"计数"的实际限值 还取决于 Modbus 从站中的限制。
- DataPtr: "DataPtr"参数。"DataPtr"参数是指向 S7-200 CPU 的 V 存储器中与读取或写入请求相关 的数据的间接地址指针。对于读取请求,DataPtr 应指向用于存储从 Modbus 从站读取的数据的 第一个CPU存储器位置。对于写入请求,DataPtr 应指向要发送到Modbus从站的数据的第一个CPU存储器位置。

S7-200

Hardware

Software

- Done:完成输出。完成输出在发送请求和接收应答时关闭。"完成"输出在应答完成或MBUS_MSG指令因错误而中止时打开。
- Error: "错误"输出仅当"完成"输出打开时有效。低位编号的错误代码 (1到8)是由MBUS_MSG指令检测到的错误。这些错误代码通常指示与 MBUS_MSG指令的输入参数有关的问题,或接收来自从站的应答时 出现的问题。奇偶校验和CRC错误指示存在应答但是数据未正确接收。 这通常是由电气故障(例如连接有问题或者电噪声)引起的。
- 高位编号的错误代码(从101开始)是由Modbus从站返回的错误。这些错误指示从站不支持所请求的功能,或者所请求的地址(或数据类型或地址范围)不被Modbus从站支持。
- MBUS_MSG指令错误代码含义如下所示:

Hardware Software

• MBUS_MSG 错误代码含义表

MBUS_MSG 错误代码	说明
0	无错误。
1	应答时奇偶校验错误: 仅当使用偶校验或奇
	校验时才会发生。传输被干扰,可能会收到
	不正确的数据。该错误通常是由电气故障(例
	如错误接线或者影响通讯的电噪声)引起的。
2	保留位,暂未启用。
3	接收超时: 在"超时"时间内,没有来自从站
	的应答。可能有以下一些原因: 与从站的电
	气连接有问题、主设备和从站设置为不同的
	波特率/奇偶校验设置,以及错误的从站地
	址。
4	请求参数出错:一个或多个输入参数(从站、
	读写、地址或计数)被设置为非法值。检查文
	档中输入参数的允许值。
5	Modbus 主设备未启用:在调用 MBUS_MSG
	前,每次扫描时都调用 MBUS_CTRL。
б	Modbus 忙于处理另一个请求: 一次只能激活
	一条 MBUS_MSG 指令。
7	应答时出错: 收到的应答与请求不相关。这
	表示从站中出现了某些错误,或者错误的从
	站应答了请求。
8	应答时 CRC 错误:传输被干扰,可能会收到
	不正确的数据。该错误通常是由电气故障(例
	如错误接线或者影响通讯的电噪声引起的。

2

Workshop

2

S7-200

Hardware Software Workshop •

MBUS_MSG 指令

MBUS_MSG 错误代码含义表(续)

101	从站不支持在该地址处所请求的功能,请参	
	阅表 1-4。	
102	从站不支持数据地址:"地址"加上"计数"所要	
	求的地址范围超出了从站所允许的地址范	
	围.	
103	从站不支持数据类型: 该"地址"类型不被从	
	站支持。	
104	从站故障。	
105	从站已接受消息但应答延迟: 这是	
	MBUS_MSG的错误,用户程序应在稍后重新	
	发送请求。	
106	从站忙,因此拒绝消息: 可以再次尝试相同	
	的请求,以获得应答。	
107	从站因未知原因而拒绝消息。	
108	从站存储器奇偶校验错误:从站中有错误。	

S7-200

•

Hardware

Software

Workshop

上述参数支持的操作数和数据类型如下表所示。

输入输出	操作数	数据类型
First	布尔	I, Q, M, S, SM, T,
		C, V, L(以上升沿检测元
		素为条件的功率流)
Slave	字节	VB, IB, QB, MB, SB,
		SMB, LB, AC, Constant,
		*VD, *AC, *LD
RW	字节	VB, IB, QB, MB, SB,
		SMB, LB, AC, Constant,
		*VD, *AC, *LD
Addr	双字	VD, ID, QD, MD, SD,
		SMD, LD, AC, Constant,
		*VD, *AC, *LD
Count	整型	VW, IW, QW, MW, SW,
		SMW, LW, AC, Constant,
		*VD, *AC, *LD
DataPtr	双字	&VB
Done	布尔	I, Q, M, S, SM, T,
		C, V, L
Error	字节	VB, IB, QB, MB, SB,
		SMB, LB, AC, *VD,
		*AC, *LD

Hardware

Software

Workshop

- ・ 定义
- Modbus 报文传输格式
- Modbus 主站协议指令
 - MBUS_CTRL 指令
 - MBUS_MSG 指令
- Modbus 从站协议指令
 - MBUS_INIT 指令
 - MBUS_SLAVE 指令

Hardware

Software

Workshop

•

MBUS_INIT 指令

• MBUS_SLAVE 指令

MBUS_INIT 指令

S7-200

Hardware

Software

Workshop

•

- 西门子 Modbus 从站协议库包括两条指令: MBUS_INIT 指令和 MBUS_SLAVE 指令。
 - MBUS_INIT 指令用于启用和初始化或禁止Modbus 通讯。
- MBUS_SLAVE 指令用于为 Modbus 主设备发出的请求服务。
- MBUS_INIT 指令用于启用和初始化或禁止 Modbus 从站通讯。在使用MBUS_SLAVE 指令之前,必须正确执行 MBUS_INIT 指令。指令完成后立即设定"完成"位,才能继续执行下一条指令。

- **S7-200**
- Hardware

Software

Workshop

EN:指令使能位。

•

- Mode:模式选择,启动/停止 Modbus 从站通信。
 Mode 参数允许使用以下两个数值:1——启动,
 0——停止。
- Address: 从站地址, MODBUS从站地址, 取值1~247。
- Baud: 波特率,可选1200,2400,4800,9600, 19200,38400,57600,115200。

Hold Start, Done, Error

- Parity: 奇偶校验, 0=无校验; 1=奇校验; 2=偶校验。
- Delay: 延时,附加字符间延时,缺省值为0。
- MaxIQ: 最大I/Q位,参与通信的最大I/O点数,S7-200的I/O映像区为 128/128,缺省值为128。

MBUS_INIT 指令

S7-200

Hardware

Software

- MaxAI:最大AI字数,参与通信的最大AI通道数,可为16或32。
- MaxHold: 设定供Modbus地址4xxxx使用的V存储器 中的字保持寄存器数目。
- HoldStart:保持寄存器区起始地址,以&VBx指定 (间接寻址方式)。
- Done: 初始化完成标志,成功初始化后置1。
- Error: 初始化错误代码。

✓ SIMATIC ✓ IEC 1131		
L D F D	MBUS_INIT = BN = Mode Done = - Addr Error = Baud = Parity = Delay = Max/U = Max/H = Max/Hold = Hold Start	
S T L	CALL MBUS_INIT, Mode, Addr, Baud, Parity, Delay,MaxIQ, MaxAI, MaxHold, HoldStart, Done, Εποr	

MBUS_INIT 指令

•

Hardware

Software

Workshop

SIEMENS

MBUS_INIT 指令错误代码的含义如下表所示:

错误代码	说明
0	无错误
1	内存范围错误
2	非法波特率或奇偶校验
3	非法从属地址
4	非法 Modbus 参数值
5	保持寄存器与 Modbus 从属符号重叠
6	收到奇偶校验错误
7	收到 CRC 错误
8	非法功能请求/功能不受支持
9	请求中的非法内存地址
10	从属功能未启用

MBUS_INIT 指令

S7-200

Hardware

Software

Workshop

输入/输出	操作数	数据类型
模式、地址、奇偶校验	VB, IB, QB, MB, SB, SMB,	字节
	LB, AC, Constant, *VD,	
	*AC, *LD	
波特、HoldStart	VD, ID, QD, MD, SD, SMD,	双字
	LD, AC, Constant, *VD,	
	*AC, *LD	
延时、MaxIQ、MaxAI、	VW, IW, QW, MW, SW,	字
MaxHold	SMW, LW, AC, Constant,	
	*VD, *AC, *LD	
完成	I, Q, M, S, SM, T, C, V,	布尔
	L	
错误	VB, IB, QB, MB, SB, SMB,	字节
	LB, AC, *VD, *AC, *LD	

Hardware

Software

Workshop

•

MBUS_INIT 指令

• MBUS_SLAVE 指令

MBUS_SLAVE 指令

S7-200

•

Hardware

Software

Workshop

SIEMENS

MBUS_SLAVE 指令被用于为 Modbus 主设备发出的请求服务,并且 必须在每次扫描时执行,以便允许该指令检查和回答 Modbus 请求。 MBUS_SLAVE 指令无输入参数,在每次扫描且 EN 输入开启时执行。

SIMATIC IEC 1131		
L A D F B D	- EN - EN Bone - Error -	
S T L	S CALL MBUS_SLAVE T Done, Error	

- EN: 指令使能位。
- Done: Modbus执行通信中时置1,无 MODBUS 通信活动时为 0。
- Error: 错误代码。

MBUS_SLAVE 指令

S7-200

Hardware Software

Workshop

•

MBUS_SLAVE 指令错误代码的含义如下表所示。

错误代码	说明
0	无错误
1	内存范围错误
2	非法波特率或奇偶校验
3	非法从属地址
4	非法 Modbus 参数值
5	保持寄存器与 Modbus 从属符号重叠
б	收到奇偶校验错误
7	收到 CRC 错误
8	非法功能请求/功能不受支持
9	请求中的非法内存地址
10	从属功能未启用

• 上述参数支持的操作数和数据类型如下表所示。

输入输出	操作数	数据类型
完成	I, Q, M, S, SM, T, C, V,	布尔
	L	
错误	VB, IB, QB, MB, SB, SMB,	字节
	LB, AC, *VD, *AC, *LD	

S7-200 Modbus 通信

S7-200

Hardware

Software

Workshop

- 概述
 - 定义
 - Modbus 报文传输格式
 - Modbus 主站协议指令
 - Modbus 从站协议指令
- Micro/Win 指令库的管理
 - 指令库的安装
 - 指令库的卸载
 - 指令库的添加
 - 指令库的删除
- 编程示例
 - 功能要求
 - 实现步骤

Micro/Win 指令库的管理

S7-200

Hardware

Software

- 指令库的安装
- 指令库的卸载
- 指令库的添加
- 指令库的删除

Hardware

Software

- Step7-Micro/Win 指令库光盘可直接从西门子订购,名称为 STEP 7-Micro/WIN Add-On: Instruction Library (STEP 7-Micro/WIN 附件: 指令库),订购编号为 6ES7 830 2BC00 0YX0。Step7-Micro/Win 指 令库光盘内包含了 USS 协议指令库和 Modbus 指令库,安装后可在 Step7-Micro/Win 中调用。
- 使用西门子指令库光盘安装指令库(本文以 Step7-Micro/Win V3.2版 的库安装文件为例)的步骤如下:
- (1)单击光盘的 Inst_Library_V11 下 "Setup.exe" 文件,在弹出的 安装语言选择框中选择安装语言,单击 "确定" 按钮。

Hardware

Software

S7-200

Hardware Software

Workshop

(3)安装完成后,单击"Finish"按钮结束安装,关闭安装程序。

S7-200

Hardware

Software

Workshop

(4)安装完成后,启动 Step7-Micro/Win,在"指令树">"库"项下可 以发现多出了 USS 协议库和 Modbus 协议库。

Micro/Win 指令库的管理

S7-200

Hardware

Software

- 指令库的安装
- 指令库的卸载
- 指令库的添加
- 指令库的删除

•

S7-200

Hardware

Software

- 卸载西门子指令库光盘安装的指令库,按以下步骤即可:
 - (1) 单击光盘的 Inst_Library_V11 下 "Setup.exe" 文件,在弹出的 语言选择框中选择语言,单击"确定"按钮进入下一步。

选择设置	语言		×
	从以下列	表中选择安装语	言.
	英语		<u> </u>
		确定	取消

٠

S7-200

Hardware Software

Workshop

(2)系统将自动检测指令库的安装信息。

Micro/Win 指令库的管理

S7-200

Hardware

Software

Workshop

- 指令库的安装
- 指令库的卸载
- 指令库的添加
- 指令库的删除

S7-200

Hardware

Software

- 若有*.mwl格式的指令库文件,也可手动添加指令库。手动添加指令 库的步骤如下:
 - (1)将指令库文件拷贝到"Step7-Micro/Win V4.0\lib"目录下。
- (2)在"指令树">"库"项处单击右键菜单,执行菜单命令"添加/删除 库"。

S7-200

Hardware Software

Workshop

(3) 在弹出的"添加/删除库"对话框中,单击"添加"按钮。

S7-200

Software

٠

S7-200

Hardware

Software

Workshop

(5) 单击"确认"按钮,确认添加刚才的选择库文件。

• (6) 添加完毕之后,重新启动 Micro/Win,会发现"库"中出现了刚 才添加的库。

补充说明:

•

S7-200

Hardware

Software

- (1) 指令库文件也可拷贝到其他路径,然而考虑到便于管理,统一拷贝到 "Step7-Micro/Win V4.0/lib" 路径下更为合理。
- (2)添加成功后,请勿直接删除或移动指令库文件的位置,否则启动 Step7-Micro/Win V4.0时,将出现找不到库文件的错误提示(如下图所示)。此错误解决方法为恢复该库文件到原始添加位置、或者在 Step7-Micro/Win V4.0 删除该库文件。

Micro/Win 指令库的管理

S7-200

Hardware

Software

Workshop

- 指令库的安装
- 指令库的卸载
- 指令库的添加
- 指令库的删除

٠

٠

手动删除指令库的步骤如下:

S7-200

Hardware

Software

Workshop

(1)在 "指令树">"库" 项处单击右键菜单,执行菜单命令 "添加/删 除库"。

• (2) 在弹出的"添加/删除库"对话框中,选中欲删除的库程序所对应的库文件,单击"删除"按钮。

٠

S7-200

Hardware Software

Workshop

(3) 在提示框中,单击"删除"按钮确认删除。

Hardware Software

Workshop

SIEMENS

(4) 单击"确认"按钮关闭"添加/删除库"对话框。

指令库的删除

•

注意:按此方法"手动删除指令库",并不会删除计算机上删除该文件,因此以后还可根据需要重新添加。

S7-200 Modbus 通信

S7-200

Hardware

Software

Workshop

- 概述
 - 定义
 - Modbus 报文传输格式
 - Modbus 主站协议指令
 - Modbus 从站协议指令
- Micro/Win 指令库的管理
 - 指令库的安装
 - 指令库的卸载
 - 指令库的添加
 - 指令库的删除
- 编程示例
 - 功能要求
 - 实现步骤

Hardware

Software

Workshop

SIEMENS

• 实现步骤

- Modbus 从站组态说明
- Modbus 主站组态说明
- 通信测试

Hardware

Software

- 将一台 S7-200 CPU224XP 组态为 Modbus 主站,当主站 I0.3 为 ON 时,读取另一台作为 Modbus 从站的 S7-200 CPU224XP 的 I0.0~I0.7 的数值。
- 硬件需求:
- PC 机、2台 S7-200 CPU 224XP、RS 232 电缆(推荐采用西门子 S7-200 串口编程电缆)
- 示例的简要实现步骤如下:
- (1) 编写作为 Modbus 从站的 S7-200 CPU 的 PLC 程序,将程序 下载到从站 PLC 中。
- (2)编写作为 Modbus 主站的 S7-200 CPU 的 PLC 程序,将程序 下载到主站PLC中。
- (3) 用串口电缆连接 Modbus 主从站,在Step-7 Micro/Win 的状态 表中观察 Modbus 主站保持寄存器中的数值,并与实际数值对比。

Hardware

Software

Workshop

SIEMENS

• 实现步骤

- Modbus 从站组态说明
- Modbus 主站组态说明
- 通信测试

S7-200

Hardware

Software

Workshop

- Modbus 从站组态说明
- Modbus 主站组态说明
- 通信测试

Modbus 从站组态说明

S7-200

Hardware

Software

Workshop

- 1 分配库存储区
- 利用指令库编程前首先应为其分配存储区,否则 Step7-Micro/Win 编译时会报错。具体方法如下:
- (1)执行 Step7-Micro/Win 菜单命令"文件">"库存储区",打开"库存储区分配"对话框。

地址文本框:输入库存储区的起始地址。

Modbus 从站组态说明

S7-200

•

•

٠

Hardware

Software

- (2) 在"库存储区分配"对话框中输入库存储区的起始地址,注意避免 该地址和程序中已经采用或准备采用的其它地址重合。
- (3) 点击"建议地址"按钮,系统将自动计算存储区的截止地址。
- (4)点击"确定"按钮确认分配,关闭对话框。

Modbus 从站组态说明

2 从站组态说明

•

•

S7-200

Hardware

Software

Workshop

- 根据示例要求,本从站要响应主站报文,故只需编写主程序。主程序 由以下两个网络构成,程序说明如下。
 - (1) 网络1用于初始化 Modbus 从站,即是将从站地址设为1,将端口0的波特率设为9600、无校验、无延迟,允许存取所有的I、Q 和 AI 数值,保存寄存器的存储空间为从 VB0 开始的1000个字(2000个字节)。

S7-200

Hardware

Software

Workshop

- Modbus 从站组态说明
- Modbus 主站组态说明
- 通信测试

Modbus 主站组态说明

S7-200

Hardware

Software

Workshop

IEMENS

•

- 调用 Modbus 主站指令编程前也应分配库存储区,与从站编程类似, ٠ 不再赘述。
 - Modbus主站指令也只需编写主程序,主程序也由两个网络构成。
 - (1) 网络1用于每次扫描时调用 MBUS CTRL 指令来初始化和监视 Modbus 主站设备。Modbus 主设备设置为9600波特,无奇偶校验, 允许从站1000毫秒(1秒)的应答时间。

Modbus 主站组态说明

S7-200

•

Hardware

Software

Workshop

(2) 网络2实现在 I0.3 正跳变时执行 MBUS_MSG 指令读取从站2的 地址 10001~10008 的数值。保持寄存器存储区从 VB200 开始,长8 个字。根据 Modbus 从站寻址规约,10001~10008 即 S7-200 PLC 中I0.1~I0.7的 Modbus 地址值。

•

S7-200

Hardware

Software

Workshop

SIEMENS

- Modbus 从站组态说明
- Modbus 主站组态说明
- 通信测试

•

S7-200

Hardware

Software

Workshop

- 通信测试的步骤如下:
 - (1) 用串口电缆连接主从站 PLC 的端口0。
- (2) 将主从站 PLC 设置为 Run 状态。
- (3) 设置从站 10.0~10.7。
- (4) 将主站的 I0.3 设为ON,利用 Step7-Micro/Win 状态表监测主站保持寄存器的数值。

		格式	当前值	新值
1	VB200	十六进制 📃	16#FF	
2	VB201	无符号	0	
3	VB202	无符号	0	
4	VB203	无符号	0	
5	VB204	无符号	0	

• 从图中可以看出VB200存储的即是 10.0~10.7 的数值,此时均为 ON 状态,与这些输入点的实际状态一致。

S7-200

Hardware

Software

Workshop

- 补充说明:
 - (1) 如果 Modbus RTU 通信失败,可分别从主从站的报文入手。
 - (2)测试 Modbus 从站通信是否正常,可利用计算机上的串口通信 调试软件向从站发送请求帧,查看是否能接受到正确的响应帧。
 - (3)测试 Modbus 主站通信是否正常,可由主站向计算机串口发送 请求帧,在计算机上用串口通信调试软件查看请求帧是否正常。

